
On the Path to 
Causal Inference 

Mark Farragher



Agenda

➔ Why care about causal inference?

➔ The Ladder of Causation

➔ The causal diagram

➔ Types of biases that affect causal models 
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About me

➔ Background in quant economics

➔ …then moved into data science

➔ T R I P T E A S E (travel tech)

➔ Project: appelpy
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Why care about 
causal inference?
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Causal questions are ubiquitous

➔ Social sciences

➔ Epidemiology

➔ Executives want ‘actionable insights’
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How does passive 
smoking affect the 
mortality of 
non-smokers? 

What are the causes of 
customer churn at a 
software company? 

What is the effect of 
minimum wage laws on 
employment? 
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Ladder of causation
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Ladder of causation

➔ Counterfactual (‘what if’ I’d done X1 instead of 

X2?)

➔ Intervention (what happens to Y when I do X1?)

➔ Association (how do X1 and Y relate?) 
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In the news today!
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➔ Paper talks about 

‘association’

➔ Press release uses 

language of 

causation 

(subconsciously?) 



Causal diagram
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A night in the 
Tower?







Hotel website funnel (example)
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What could affect conversion rate?
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➔ Seasonality (hour of day, day of week, week of 

year)

➔ Traffic source (organic, paid, etc.)

➔ Device

➔ Price factors

➔ …and much more!



Consider two theories
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➔ Personalised messages on hotel websites 

have a positive effect on conversion rate.

➔ Searchers from Google have a higher 

likelihood of booking a hotel room.



Messages
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Experimentation
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➔ Can the treatment be randomly assigned?

➔ Personalised messages: YES (but the scale of 

data can be an issue).

➔ Searchers from Google: NO.



Diagram: effect of messages
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Diagram: effect of messages
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No collider

Block with {S}

M → S → Y



Diagram: effect of messages
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S is collider here!

M → S ← G → Y

M → |S| ← G → Y

Block with {G}



Diagram: enter message triggers
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M ← T → Y

No collider

Block with {T}



Diagram: A/B test
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Tooling
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➔ Dagitty (above)

➔ Python packages, e.g.: causality; 

causalgraphicalmodels; dowhy



Diagram: effect of Google source
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Confounders: M & S

Control for {M, S}



Diagram: effect of Google source
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G → S ← M ← T → Y

S is collider here!

G → |S| ← M ← T → Y

Block with {M}



Why causal diagrams are great
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● Assumptions for a model are explicit

● A toolkit for identifying appropriate control 

variables

● Diagrams can be refined iteratively



Types of bias
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Regress Y on X & Z
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X Z Y



Z: confounding variable

X ← Z → Y

X Z Y
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Confounders
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● Control for confounders – they help your 

model’s estimates by:

○ Increasing their precision;

○ Reducing their bias.



Z: colliding variable

X → Z ← Y

X Z Y
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Colliders
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● Collider automatically blocks backdoor path

● Common effect of X & Y – beware

● Sometimes a variable can be a collider & a 

confounder on different paths!



Z: mediating variable

X → Z → Y 

X Z Y
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Mediators
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● A mediator (M) introduces an indirect effect 

of X on Y.

● If we care only about the total effect of X on 

Y, then there’s no need to control for M.



Summary
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● Causal questions are ubiquitous

● Causal effects can be estimated without 

randomised experiments (fortunately)

● The causal diagram is useful for modelling

● Control for confounders & beware of colliders

● Tools can assist with the choice of controls



Further resources
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● Pearl: The Book of Why

● Angrist & Pischke: Mastering ‘Metrics

● Python libraries: statsmodels; 

linearmodels; appelpy
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